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Defect-induced spatial coherence in the discrete nonlinear Schro¨dinger equation
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~Received 21 July 2003; published 22 March 2004!

We have considered the discrete nonlinear Schro¨dinger equation~DNLSE! with periodic boundary condi-
tions in the context of coupled Kerr waveguides. The presence of a defect in the central oscillator equation can
induce quasiperiodic or large chaotic amplitude oscillations. As for the quasiperiodic dynamics, an enhance-
ment of the amplitude correlations in certain oscillator pairs can take place. However, when the array dynamics
becomes chaotic, these correlations are destroyed, and, for suitable defects, synchronization, in the information
sense, of certain signals arises in this Hamiltonian system. A numerical continuation analysis clarifies the onset
of this dynamical regime. In this case, phase synchronization follows with a peculiar distribution of the
Liapunov exponents. These effects occur for initial conditions in a small neighborhood of a family of stationary
solutions. We have also found a regime characterized by persistent localized chaotic amplitudes. We have
generalized these results to take into account birefringent effects in waveguides.
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I. INTRODUCTION

Nonlinear effects in waveguide arrays have been stud
intensively in the past several years, both theoretically@1,2#
and experimentally@3–5#. The propagation of waves in thes
arrays is associated with new and interesting effects not
flected in continuous media@1,2#. By injecting a strong op-
tical field, certain field distributions propagate while keepi
a fixed spatial profile in a limited number of Ke
waveguides. These stationary fields are known as disc
spatial solitons~DSS’s! or breathers@6#. In nonlinear optics,
the existence of DSS’s was theoretically predicted for
first time in Ref. @1#. The differences with the continuou
system become clear if the DSS are forced to move ac
the array. In this case, these DSS tend to propagate alon
waveguides. The equation that describes these waveguid
rays is referred to as the discrete nonlinear Schro¨dinger equa-
tion ~DNLSE!. In contrast, the continuum limit of the
DNLSE is translationally invariant@2,5#. Recently, a compre
hensive review on the DNLSE was published in Ref.@7#. The
DNLSE describes, among other systems, localized mode
long protein systems@8# and arrays of nonlinear mechanic
pendula @9#. The theoretical predictions of the DSS ha
been verified recently in experimental observations in K
waveguide arrays@3,4,10# typically using AlxGa12xAs as
Kerr media. Several types of defects in planar wavegu
arrays were studied experimentally in Ref.@11#. As for ap-
plications, recently a model describing diffraction manag
nonlinear waveguide arrays has been reported@12# which
supports modulated DSS as well as chaotic solutions.
DNLSE also arises in models of Bose-Einstein condens
~BEC’s! trapped in periodic potentials generated by opti
standing waves@13#. Indeed, the dynamics of this BEC
governed by the Gross-Pitaevskii equation and can
mapped, in the tight binding approximation, to a DNLS
@13#.

In this work, we study a family of solutions of th
DNLSE with periodic boundary conditions and on-site d
fects. Small defects induce relevant bifurcations and inter
1063-651X/2004/69~3!/036603~10!/$22.50 69 0366
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ing behavior in these new solutions. Moreover, we study
intensity correlations of the electromagnetic fields that ar
in certain pairs of waveguides when the system dynamic
quasiperiodic or chaotic. In this Hamiltonian system, w
show that it is possible to synchronize, in the informati
sense, certain chaotic signals generated by different wa
guide pairs. Based on an information theory approach, ch
synchronization has been considered recently in experim
tal time series and theoretical models@14,15#. We have found
special properties in these solutions using order parame
Liapunov exponents, and phase locking features. This ar
has seven sections. The DNLSE is discussed in Sec. II in
framework of nonlinear optics. A family of stationary solu
tions is discussed in Sec. III. In Sec. IV, the quasiperio
regime of these solutions induced by a defect is conside
In Sec. V, we discuss the chaotic case of this system. In S
VI, we consider a generalization of these solutions in
DNLSE that takes into account elliptical birefringence
waveguides. Finally, in Sec. VII we give the conclusions.

II. THE MODEL

We consider an array of one-dimensional coup
waveguides. The neighboring waveguides are separated
each other by the same distanced and therefore the coupling
constant between these is the same. We consider the
with no losses and continuous excitation. Within the fram
work of the coupled mode theory, the evolution ofEn , the
electric field envelope in thenth waveguide, is given by the
following equation@2#:

i
]En

]z
1bnEn1C~En211En11!1guEn

2uEn50. ~1!

This system is assumed to have periodic boundary co
tions. In Eq.~1!, bn is the linear propagation constant of ea
waveguide,C is the linear coupling coefficient, andg is the
nonlinear parameter. By introducing the dimensionless fi
©2004 The American Physical Society03-1
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Qn5Ag/2CEn exp@2i(b12C)z#, Eq. ~1! transforms into the
discrete nonlinear Schro¨dinger equation given by

i
]Qn

]z
1dnQn1~Qn211Qn1122Qn!12uQn

2uQn50, ~2!

where z5Cz is the normalized propagation distance a
dn5(bn2b)/C. The Hamiltonian equations related to th
DNLSE can be obtained by transforming into action-an
variables (I n ,un), whereQn5AI n exp(2iun). The quantity
I n[Pn

2 stands for the light intensity of thenth waveguide
@7#. The equations forPn andun are the following:

dPn

dz
5Pn21 sin~un212un!1Pn11 sin~un112un!,

dun

dz
522dn2

Pn21 cos~un212un!

Pn

2
Pn11 cos~un212un!

Pn
22Pn

2 . ~3!

III. NEW STATIONARY SOLUTIONS
AND THEIR STABILITY

We will consider two examples of a family of DNLSE
stationary solutions. These solutions depend harmonically
z. To find these, we deal with the nonlinear map appro
@16,17#. We underline that there are different ways to fi
stationary solutions of the DNLSE@7#, one of which relies
on the solution of a set of nonlinear algebraic equations fo
given coupling constant and then makes use of continua
methods@7#. In Ref. @16#, it was shown that homoclinic an
heteroclinic orbits of a suitable Hamiltonian map supp
breather solutions in the DNLSE. Instead, we will consid
those DNLSE stationary solutions which are determined
the ~elliptic! stable periodic orbits of the Hamiltonian ma
mentioned above. These two types of DNLSE solutions
clearly different. Indeed, these elliptic and homoclinic orbi
as is well known, have different origins and properties@18#.
While the first are periodic, according to the Poinca´-
Birkhoff theorem, the homoclinic orbits have no periodici
i.e., repeated iteration of the associated map produces
homoclinic points@18#. These new solutions are obtained
making dPn /dz50 andun5um for any nÞm. Moreover,
we can define the frequencies on the toriI n5Pn

2 by setting
dun /dz5l, wherel is a constant. Therefore, the stationa
solutions have the formQn(z)5Pn exp(2ilz). As a result,
the following map is obtained:

Xn115Pn ,

Pn115~Gn22uPnu2!Pn2Xn , ~4!

where Gn522l2dn . The JacobianJ of this map is area
preserving, i.e.,J51. We will consider in this section the
caseG522l for which dn50. For the sake of definition, we
will label Eq. ~4! as the cubic map~CM!. This map has the
symmetryXn→2Xn andPn→2Pn . The fixed points of the
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CM are (0,0) and (6AG/221,6AG/221). After consider-
ing the linearization of the CM, it is found that the poin
(0,0) is elliptic for uGu,2, for G52, it is parabolic and
finally for G.2, it becomes a saddle point. Instead, the fix
points (6AG/221,6AG/221) are elliptic for 2,G,4, for
G54, these are parabolic and finally forG.4, both points
become saddle points. Now, we proceed to illustrate the p
ence of resonances and island chains localized around
elliptic points. WhenG52.5, we find a saddle point at (0,0
and two elliptic points at (6AG/221,6AG/221). In Fig.
1~a!, quasiperiodic orbits surround the elliptic poin
(AG/221,AG/221) and further away, we identify a perio
seven island chain and its resonances. Surrounding t
resonances, we also observe the characteristic chaotic
@18#. When G52.6, (0,0) is a saddle point while
(6AG/221,6AG/221) are elliptic points. In Fig. 1~b!, sur-
rounding the elliptic point (AG/221,AG/221), we find an
island chain of period 6. We will show that the resonances
period M56 andM57 generate stable stationary DNLS
solutions in a ring ofM coupled waveguides. These tw
stationary solutionsPn are shown in Fig. 2. The stability o
these solutionsPn was numerically studied by integrating th
DNLSE. We have carried out these integrations with sligh
different initial conditions @19#. That is, Qn(z50)5Pn
1nn , wherenn stands for a small random perturbation.
addition, we have considered the Liapunov exponents of
corresponding linearized equations@18#. We have found nu-
merically that our stationary solutions are stable since all
Liapunov exponentsLn of this system converge toward
zero.

We underline that the parameterl is relevant to find
the resonance under consideration in the CM of Eq.~4!
and, therefore,l parametrizes the actionsI n5Pn

2 . We also

FIG. 1. Plot of the stationary fieldPn versusPn11 for ~a! G
52.5 and~b! G52.6.
3-2
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DEFECT-INDUCED SPATIAL COHERENCE IN THE . . . PHYSICAL REVIEW E 69, 036603 ~2004!
have observed that our DNLSE solutions are rob
with respect to perturbations of the kinduQnu2sQn , where
s'1. The DNLSE stationary solution, which is generat
by the resonance of period 7 around the elliptic po
@(2l/2)1/2s(2l/2)1/2s# in the associated map, is still stabl
The map eigenvalues of this equilibrium point are given
11sl6Al2s212ls. This more general equation i
known as the generalized DNLSE~GDNLSE! @7#. We note
that the elliptic points of the CM were considered as st
ding wave solutions of a DNLSE consisting of a large nu
ber of oscillators@20#. In our solutions, instead, the numb
of oscillators, i.e., waveguides, coincides with the per
of the map resonance and, moreover, the phases of the o
lators differ by a small perturbation, i.e., these are ph
locked.

IV. QUASIPERIODIC SOLUTIONS

In this section, we add a defect to the linear propagat
constant of the central waveguide and consider the qua
eriodic solutions of this system. That is, we study the c
whered3.0 anddn50 for nÞ0. The central waveguide, in
both Figs. 2~a! and 2~b!, has precisely the largest intensit
We make use of the stationary DNLSE solutions of the p
vious section as initial conditions for this perturbed DNLS
This defect induces correlations between the intensities
given pair of waveguides. We consider the linear correlat
functionR to estimate the level of association between th
intensities. The intensities of the waveguidesi andj are fully
correlated~uncorrelated! whenR51 (R50), where

FIG. 2. Plot of the stationary field amplitudesPn versus wave-
guide indexn. ~a! Period seven resonance andG52.5 and~b! period
six resonance andG52.6.
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N
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and ^•••& stands for spatial average. The significance le
of R in our calculations is good enough. The intensities
the second and fourth waveguides have the least degre
correlation among all waveguide pairs. Ford350.025, Fig.
3~a! shows thatI 2 and I 4 have a slight correlation but stil
their oscillation amplitudes are similar to the maximum
uI 22I 4u.

Instead, whend350.4 andd51.25, as observed in Figs
3~b! and 3~c!, respectively, the intensitiesI 2 and I 4 have
increased largely their degree of correlation. In these figu
the magnitude of the intensity oscillations has increa
more than 10 times with respect to the case whend3
50.025. However, as shown in Fig. 3~d!, the boundaries of
the differenceDI 5uI 22I 4u remain basically unchanged a
the defectd3 takes on different values. As long as the d
namics is quasiperiodic, this explains whyR→1 asd3 in-
creases.

To qualitatively understand the linear correlation grow
R→1 asd3 increases, it is enough to consider a simplifi
model consisting of three waveguidesQ21 , Q0, and Q1,
whereQ21'Q1 , ud0u!1, andd15d2150. This simplified
model explains, on the one hand, the enhancement of
oscillation amplitudes ofQ21'Q1 and, on the other hand
the stability of the small oscillations ofu12u21 and uQ21u
2uQ1u, which on average vanish. This agrees with the ty
cal behavior of symmetric waveguides such asQ2 and Q4.
Thus, the system for the three modes takes the form

i
dQ0

dz
1d0Q012uQ0u2Q012Q150,

FIG. 3. Plot of I 2(z) versusI 4(z) for ~a! d350.025, ~b! d3

50.4, and~c! d351.25. ~a! Plot of I 42I 2 versusz for d350.025
~solid line!, d350.4 ~dashed line!, andd351.25 ~dotted line!.
3-3
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C. L. PANDO L. AND E. J. DOEDEL PHYSICAL REVIEW E69, 036603 ~2004!
i
dQ1

dz
12uQ1u2Q11Q01Q150, ~5!

where the labels are the same as in Eq.~2! and d05(b0
2b1)/C. To explain the enhancement of the oscillation a
plitudes ofQ0 and Q1, we have imposed the symmetry r
lation Q15Q21. By using the set of variablesS05uQ0u2

12uQ1u2, S15uQ0u222uQ1u2, S25 i (Q1Q0* 2Q0Q1* ), and
S35(Q1Q0* 1Q0Q1* ), Eq. ~5! becomes

dS1

dz
54S2 ,

dS2

dz
5S 3

2
S01d02

1

2
S121DS322S1 ,

dS3

dz
52S 3

2
S01d02

1

2
S121DS2 . ~6!

The quantityS0 is a constant of the motion of Eq.~6! and,
additionally, a second invariant is given byS1

212S2
212S3

2

5S0
2. We can find the solution of Eq.~6! with an integration

scheme used to study the propagation of polarized ligh
birefringent Kerr waveguides@21#. Thus, we obtain

S1~W!54W1S1~0!,

S3~W!5W21S 1

2
S1~0!112

3

2
S02d0DW1S3~0!, ~7!

where W5*0
zS2(t)dt. We use the second invariant t

find the variableW, which is determined from an equatio
of motion for the conservative system1

2 (dW/dz)2

1V(W)50, whereV(W)5 1
4 S1

21 1
2 S3

22 1
4 S0

2. Any trajectory
in this potential starts atz5z050 andW50 with dW(z0
50)/dz5S2(0). Moreover, dV(W50)/dW52S1(0)

1S3(0)@ 1
2 S1(0)112 3

2 S02d0# and d2V(W50)/dW258

12S3(0)1@ 1
2 S1(0)112 3

2 S02d0
2#. We choose a trajectory

whose initial conditions coincide with a fixed poin
@S1(0),S2(0),S3(0)# of Eq. ~6! when d050. As a result,

dV(W50)/dW52S1(0)1S3(0)@ 1
2 S1(0)112 3

2 S0#50. In
addition, the assumptionuQ0u2.2uQ1u2 at z50 implies that
S1(0).0. Moreover, we suppose thatQ0 and Q1 have the
same phase atz50. As a result,S3(0).0 and S2(0)50.
Therefore, the positive sign of the second derivat
d2V(W50)/dW2 indicates that the fixed poin
@S1(0),S2(0),S3(0)# is an elliptic ~equilibrium! point. A
small value ofd0Þ0 with these initial conditions, accordin
to the expression for the first derivativedV(W50)/dW
52d0S3(0), induces a shift of the local minimumV(Wmin)
either to the right or to the left ofW50. As a result, when
d0Þ0, the trajectory starts at a turning point of the shift
potentialV(W) sincedW(z050)/dz50 and, therefore, the
intensity oscillations are amplified.

To complete this qualitative explanation, we need
show that the variablesu12u21 and uQ1u2uQ21u are
bounded and, therefore, stable. To this end, let us consid
03660
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simplified model consisting of three waveguidesQ21 , Q0,
andQ1, whereQ21'Q1. Using Eq.~3!, the expressionQj
5Pj exp(2iuj) and the approximationuu i2u j u!1 for i , j
521,0,1, we get the following equations foru j :

du j

dz
12Pj

21S Pj 21

Pj
1

Pj 11

Pj
D5d0d0 j , ~8!

whered0051 andd0 j50 for j 561. d0 stands for the de-
fect. Taking into account the small order parameter ofuu1
2u21u!1 and uP12P21u!P1,21, we get the equations
d2D1,2/d2z1VD1,250, where V[(2P11P0)(2/P1
1P0 /P1

224P1), D1[u12u21 , D2[P12P21. We have
assumed that the variablesPn have a negligible variation
sinceud0u!1. The stability of these solutions is determine
by V.0. Therefore,D1 andD2 are stable and do not depen
on d0. Thus, both the enhancement of the intensity osci
tions and the boundedness ofD1,2 suggest thatR grows asd0
increases. This behavior agrees qualitatively with that of F
3.

To further estimate the stability of our solutions, we ha
considered several random initial conditions in the inter
(Pn2nmax,Pn1nmax) with nmax51023, i.e., within a small
neighborhood ofun50. ThePn are given in Fig. 2. In this
case, stable quasiperiodic evolution ofI n(z) has typically
been found for distances as large asz;105 for d350.025,
d350.4, andd351.25. The calculated Liapunov exponen
confirm that the dynamics in all these cases is quasiperio

The modulus of the following complex order parame
measures the coherence of the system. This is define
follows:

Z5

U(
j 51

N

exp~2 iu j !U
N

, ~9!

whereN stands for the number of waveguides. This para
eter was introduced by Kuramoto in the context of coup
phase oscillators@22,23#. If Z51, all the oscillators are in
phase. WhenZ50, the phasesu j are typically distributed
uniformly between 0 and 2p. Z is an indicator of the tempo
ral distribution of u j when these are either locked or u
locked. As shown below, frequent and large drops inZ are
correlated with the presence of unlocked states. The cent
massr and the dispersionDr are defined as

r5

(
j 51

N

jI j

(
j 51

N

I j

,

~Dr!25

(
j 51

N

j 2I j

(
j 51

N

I j

2r2. ~10!

These last two quantities have been used in the contex
BEC @13# as well as in the theory of one-dimensional prop
gation of quasiparticles, such as electrons and excitons@24#.
3-4
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r andDr describe the level of localization of the intensity
the array, which takes place whend3.0, as shown below. In
the case when there are no phase slips in the relative ph
across the waveguidesDumn5um2un , the order paramete
Z'1. This is illustrated in the dashed lines of Figs. 4~a! and
4~b!, whereZ'1 for d350.025. However, as shown also
Figs. 4~a!, 4~b!, Z drops substantially below 1 since at lea
one of theDumn is unlocked whend350.4 or d351.25. In
the context of the aforementioned BEC models, the ph
locking of Dumn is associated with the superfluid regim
However, whenDumn is unbounded, the system is said
behave as an insulator@13#. Moreover, the center of massr
oscillates near the position of the central waveguide, wh
as seen in Fig. 2~a!, has the largest intensity. Figures 4~c! and
4~d! suggest that the oscillations ofI n are localized within a
small neighborhood. Typically, the presence of a defectd3
.0, even in the chaotic regime as we will see in the n
section, produces oscillations ofr whose mobility is highly
inhibited. This contrasts with the Anderson localization ph
nomenon, where the presence of uncorrelated disorde
necessary to inhibit the quasiparticle propagation@24#.

V. CHAOTIC SOLUTIONS

Let us study the array consisting of seven waveguide
an interval of the defectd3, where it is possible to induce
Hamiltonian chaos. As shown below, a suitable defect
duces a bifurcation which triggers the onset of chaotic
havior. In other words, this defect perturbs a periodic or
setting up a typical scenario for Hamiltonian chaos@18#. That
is, several resonance surfaces in the system overlap gen
ing stochastic regions in phase space. Since the numbe
degrees of freedom of the system is larger than two,
generated stochastic regions form an intrincate web in ph
space known as the Arnold web@18#. As before,d350 for
nÞ3 and the initial conditions are those of the previous s
tion. In contrast to the quasiperiodic case, whereI 1'I 5 , I 2

FIG. 4. ~a! Plot of Z(z) versus distancez. ~b! Plot of the largest
phase differenceDumn(z) versus distancez. ~c! Plot of r~z! versus
distancez. ~d! Plot of Dr~z! versus distancez. Here,d350.4 ~solid
line!, d350.025~dashed line!, andd351.25 ~dotted line!.
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'I4, and I 6'I 7 as shown in Fig. 3, the onset of chaos
manifested via a symmetry breaking of these intensity pa
The existence of at least a single positive Liapunov expon
in the chaotic regime implies divergence of nearby trajec
ries @18#. This divergence explains why two otherwise inte
sity correlated waveguides, such as (I 1 ,I 5), lose their rela-
tive symmetry when chaos arises. Indeed, the onset of ch
in Hamiltonian systems is associated with the destruction
integrals of motion@18#, which, in turn, destroy the symme
tries in the system. This symmetry breaking is shown in F
5~a!, where each of the aforementioned intensity pairs
ecutes initially stable small amplitude oscillations before d
playing erratic behavior. This behavior is similar to that ne
the coupling resonance in the three-dimensional billia
problem, where a particle bounces back and forth betwee
smooth and a periodically rippled wall@18#.

In the chaotic regime and provided thatd3,0, in spite of
the symmetry breaking of the aforementioned intensity pa
a very interesting form of synchronization can take pla
between certain signals emerging from different pairs
waveguides. To this end, let us define the variablesJ155I 1
2I 5 , J245I 22I 4, and J765I 72I 6. Our simulations show
thatJ15, J24, andJ76 have the same sign during most of th
time. This is clearly appreciated in Fig. 5~b!. That is, in spite
of the chaotic state, whenJ15.0(,0), it follows almost
simultaneously thatJ24.0(,0) andJ76.0(,0). This be-
havior holds for lengths as large asz;105. We would like to
know if this coherent behavior of the signalsJmn suggests
some kind of synchronization. The answer is affirmati
from the point of view of synchronization of symbolic infor
mation~SSI! @14,15#. According to this notion, two arbitrary
oscillators are perfectly synchronized in an information se
if they produce the same information, i.e., symbols genera
by one system map one-to-one to symbols emitted by
other system. Strictly speaking, this form of synchronizat

FIG. 5. ~a! Plot of the intensitiesI 1 ~solid line! and I 5 ~dashed
line! versusz. ~b! Plot of J15 ~solid line!, J24 ~dashed line!, J76

~dotted line! versusz. ~c! Plot of log10S(F) versus log10(F) for
I 3(z). ~d! Plot of the ACFC(t) of K15(z). The autocorrelation
functionsC(t) for K15, K24, andK76 coincide exceptionally well.
Hered3520.00785.
3-5
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requires that the common information be emitted at precis
the same time. This concept was used to experiment
demonstrate that synchronization of information is poss
in an electronic oscillator circuit driven by a logistic ma
@15#. In Ref. @15#, the chaotic signals of both systems a
compared using their symbolic dynamics. In our case, F
5~b! suggests that the signalsJ15, J24, and J76 exhibit
equivalent information at the same average rate. This, h
ever, does not contradict the fact that the usual notion
synchronization cannot be applied to Hamiltonian syste
such as ours, since volume has to be preserved in p
space. Indeed, the trajectories of coupled systems hav
collapse to the synchronization manifold@25#, which is only
possible in dissipative systems. In our system, instead,
compare the chaotic signalsJnm using just their symbolic
dynamics, i.e., we only consider the sign ofJmn .

The signalsI j , where j 51, . . . ,7, arechaotic. Indeed,
the broadband power spectrumS(F) of I 3, shown in Fig.
5~c!, whereF is the normalized frequency, indicates the pre
ence of chaotic behavior. In this figure,d3520.00785. To
generate a symbolic sequence out fromJ15, J24, and J76,
we replace the value ofJi j by ‘‘ 21’’ or ‘‘1’’ provided that
Ji j ,0 or Ji j .0, respectively. Let us call these new signa
Ki j . In addition, the symmetry of the system indicates t
^Ji j &5^Ki j &50, wherê & stands for the sample average. W
have calculated the autocorrelation function~ACF! C(S) for
these signals, where

C~S!5

(
t51

t5M2S

~Ht2^H&!~Ht1S2^H&!

(
t51

t5M

~Ht2^H&!2

.

In this equation,S is the space lag,M is the number of data
and ^•••& stands for sample average@18#. It is well known
that a fast decay ofC(S) suggests the presence of chao
behavior@18#. The ACFC(S) of K15, K24, andK76 coincide
exceptionally well for all space lagsSconsidered. Indeed, a
of them collapse to the solid line of Fig. 5~d! for which d3
520.00785. In contrast, the ACFC(S) of J15, J24, andJ76
agree only at a qualitative level. As expected, the first zero
these ACF occurs at the same space lagS, since these signal
change sign almost simultaneously. Moreover, we make
of the linear cross correlation functionR for a given pair of
signalsKmn andKi j in order to quantify the extent of SSI. I
R51, the signal pair is fully correlated and SSI is perfe
For the sake of precision, we defineR as the minimum cross
correlation of the signal pairs (K15,K24), (K15,K76), and
(K24,K76). After considering several chaotic signals who
length isz;105 for different values ofd3, we obtained the
following values for R:R'0.242 for d350.25, R'0.506
for d350.075, R'0.668 for d350.0575, R'0.987 for d3
520.00785, R'0.972 for d3520.01575, R'0.825 for
d3520.25, andR'0.417 ford3521.5.

It is remarkable how the chaotic synchronization of sy
bolic information~SSI! of Jmn is manifested in the dynamic
of Dmn5um2un whend3,0. Indeed, as suggested by Fi
6~b!, all the Dmn are bounded when SSI occurs, i.e., wh
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R'1. This was found ford3520.005,d3520.00785, and
d3520.01575. This locking of phasesum and un is also
referred to as phase synchronization@26#. The latter has been
extensively studied in the context of coupled self-sustain
chaotic oscillators@26#. However, the presence of phase sy
chronization does not imply the observation of SSI. An e
ample is the cased350.075.0 for which R'0.506. More-
over, whend3,0 and the onset of phase slips ofDmn occurs,
degradation of SSI takes place. The cased3521.5, for
which R'0.417, illustrates this situation in Fig. 6~b!. Fig-
ures 6~a! and 6~b! indicate that when SSI (R'1) occurs, the
order parameterZ'1. However, as shown in these two fig
ures, when phase slips ofDmn arise, bothZ and the cross
correlationR drop below 1. Moreover, whend3.0 and in
the presence of phase locking,Z'1 andR is typically far
below 1. This means that while the phasesum are locked, the
signalsJmn do not synchronize in the information sense. Th
is illustrated in Figs. 7~a! and 7~b! for which d350.075 and
d350.0575, respectively. The associated values ofR are
written above. Whend3.0, the onset of phase slips signa
the lack of coherence and bothZ andR become smaller than
1.

Figures 6~c!, 6~d! and Figs. 7~c!, 7~d! suggest that in the
chaotic regime, the center of massr fluctuates near the po
sition of the central waveguide provided thatd3.d3

(c) ,
whered3

(c),0 and ud3
(c)u!1. Therefore, whend3.0, r is

typically localized. This contrasts with the cased3,d3
(c)

,0, as seen in Figs. 6~c!, 6~d!, wherer executes large am
plitude oscillations. To gain further insight, let us consid
Fig. 8. In Fig. 8~a!, for which d3520.00785, the minima
and maxima ofI n are roughly the same. However, provide
thatd3.0, Figs. 8~b!, 8~c!, and 8~d! suggest that the follow-
ing inequalities hold:I 3.I 2 , I 3.I 4 , ^I 2&'^I 4& and ^I 2,4&
.^I i& for i 51,5,6,7. ^¯& stands for sample average. Th
latter does not depend on whether the oscillators are ei
chaotic or quasiperiodic, phase locked or unlocked.

To further characterize the DNLSE dynamics, let us co
sider the spectrum of Liapunov exponentsLn . The DNLSE

FIG. 6. Same as Fig. 4 but for the following parameters.d3

520.00785 ~solid line!, d3520.005 ~dashed line!, and d3

521.5 ~dotted line!.
3-6
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has two constants of motion, namely, the norm and
Hamiltonian. Moreover, the DNLSE is an autonomous flo
The above features along with the symmetry of the Liapun
exponents of Hamiltonian systems@18#, suggests that at leas
four Liapunov exponents are equal to zero. In the cha
regime these Liapunov spectra are shown in Figs. 9~a!–9~c!.
When SSI takes place, there is a single positive Liapu
exponent whose magnitude is much larger than that of
other positive exponents. The latter is appreciated in F
9~a!. When d3,0 and phase slips ofDmn occur, typically,
the nonvanishing Liapunov exponentsLn have roughly the
same order of magnitude as shown in Fig. 9~b!. A similar
picture arises whend3.0, the dynamics is chaotic an
phase slips occur. This is shown in Fig. 9~c!. To characterize
the statistics of the signalsKi j when SSI takes place, let u
consider the dependence of the probability density func
~PDF! on the lengthL of the ‘‘21’’ and ‘‘1’’ intervals for

FIG. 7. Same as Fig. 4 but for the following parameters.d3

50.0575~solid line!, d350.075~dashed line!, andd350.25~dotted
line!.

FIG. 8. Plot of the intensitiesI 3 ~solid line!, I 2 ~dashed line!,
and I 4 ~dotted line! versus z for ~a! d3520.00785, ~b! d3

50.075, ~c! d350.25, and~d! d351.25.
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d3520.00785. By symmetry arguments, the PDFP(L) of
these intervals are the same. This is suggested by Fig. 9~d!,
which shows that the core ofP(L) has to a good extent a
exponential decay, where the solid and dashed lines stan
the ‘‘21’’ and ‘‘1’’ intervals, respectively. However, the sig
nals Ki j have nonzero memory as indicated by the AC
C(S) of Fig. 5~d!.

We have carried out a continuation study of the station
solutions for the case with seven and six waveguides. It w
found in both cases that the continued stationary solu
remains stable as the defect parameterd3 is changed from
d350 to the first bifurcation. In this bifurcation atd35d3

B ,
two eigenvalues leave the unit circle at the point~1,0!, i.e., in
a tangent bifurcation. The period of the stationary solutio
along the bifurcation branch remains constant. Past this
furcation point, the continued stationary solution becom
unstable. This is shown in Fig. 10, where the amplitude
the stationary solution is plotted againstd3. In the neighbor-
hood of the stable stationary solution, just before the bif
cation, the dynamics is quasiperiodic. Instead, just after
bifurcation point, initial conditions in the vicinity of the un
stable stationary solution trigger the onset of the SSI dyna
ics.

VI. NONLINEAR BIREFRINGENCE EFFECTS

We can generalize our model to consider the case w
the two orthogonally polarized states of the electric field
each waveguide interact with those of the nearest-neigh
waveguides through the evanescent fields@27#. In a given
waveguide, however, we assume that light propagates in
elliptically birefringent medium. A recent experiment has r
ported the first observation of discrete vector solitons
waveguide arrays of AlxGa12xAs @10#. Using the same as

FIG. 9. Plot of the Liapunov exponentsLn versus indexn. ~a!
d3520.005 ~dotted line!, d3520.00785 ~solid line!. Here SSI
takes place, i.e.,R'1. ~b! d3520.25 ~solid line!, d3521.5
~dashed line!. ~c! d350.0575 ~solid line!, d350.075 ~dashed
line!, d350.25 ~dotted line!. ~d! log10@P(L)# versus L for d3

520.00785 for the ‘‘21’’ intervals L ~solid line! and ‘‘1’’ intervals
L ~dashed line!.
3-7
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sumptions of Sec. II, this system can be modeled with
following set of equations@27,28#:

i
]Qn

x

]z
1dn

xQn
x1~Qn21

x 1Qn11
x 22Qn

x!

12~ uQn
xu21BuQn

yu2!Qn
x50,

i
]Qn

y

]z
1dn

yQn
y1~Qn21

y 1Qn11
y 22Qn

y!

12~ uQn
yu21BuQn

xu2!Qn
y50, ~11!

where the superindexesx and y stand for the two orthogo
nally polarized states of light. The parameterB models the
nonlinear birefringence factor, where23 ,B,2 @27#. The
other labels have the same meaning as those of Sec. II.
defect parameters are given bydn

x,y5(bn
x,y2bx,y)/C. bx,y

are suitable constants. We will assume that the propaga
constant differencebn

x2bn
y is large enough. Moreover,bn

x

5bm
x andbn

y5bm
y for all n andm with the exception of the

central waveguide for whichn53. A large enoughubn
x

2bn
yu is required to neglect nonlinear terms which under

spatial modulation with the frequencyubn
x2bn

yu @27#.
The associated equations for the stationary states ofQn

x,y

5Pn
x,y exp(2iun

x,y), where I n
x,y5uQn

x,yu2, are written below
following the lines of Sec. III. We setdPn

x,y/dz50 and
un

x,y5um
x,y . As before, we define the parametersdun

x,y/dz
5lx,y. Hence, from Eq.~11! we obtain the following map:

Xn115Pn
x ,

Pn11
x 5$Gn

x22@~Pn
x!21B~Pn

y!2#%Pn
x2Xn ,

Yn115Pn
y ,

FIG. 10. Plot of the amplitude (I 3)1/2 of the stationary state
versusd3,0 for ~a! N57 and~b! N56. This is a numerical con-
tinuation of the stationary solutions of Fig. 2. The label~B! stands
for the bifurcation point.
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Pn11
y 5$Gn

y22@~Pn
y!21B~Pn

x!2#%Pn
y2Yn , ~12!

whereGn
x,y522lx,y2dn

x,y . The JacobianJ of this map is
area preserving, i.e.,J51. In Eq.~12!, we will consider the
case wherelx5ly5l and dn

x,y50. The fixed points of
this map satisfyXn5Pn

x andYn5Pn
y . These are the follow-

ing: P15(Xn ,Pn
x ,Yn ,Pn

y)5(0,0,0,0), P25(0,0,6A2l/2,
6A2l/2), P35(6A2l/2,6A2l/2,0,0), P4

5 (6 A2l/2/A11B, 6 A2l/2/A11B, 6 A2l/2/A11B,
6A2l/2/A11B), and P55(6A2l/2/A11B,6A2l/2/
A11B,7A2l/2/A11B,7A2l/2/A11B). The eigenval-
ues of these fixed points are the following. For the pointP1,
the eigenvalues are 12l/26Al224l/2 with multiplicity 2.
For the pointsP2,3 these are 11l6Al212l and 12l/2
1Bl/26Al2(B21)214l(B21)/2. Finally for the points
P4,5, the eigenvalues are 11l6Al212l and 11B1l(1
2B)6Al2(B21)212l(12B2)/(11B).

We look for fixed points, such asP4,5, whereXn56Yn
and such that the corresponding eigenvalues are com
conjugates. This simplifies Eq.~12! and a Hamiltonian map
on the plane is obtained. As in Sec. III, we find suitab
resonances in this map, which, in turn, will become the a
plitudes of the stationary solutions of Eq.~11!. We choose to
consider the case for whichB5 2

3 . At the fixed pointsP4 and
P5 where B.1, there is no interval forl where all the
eigenvalues are complex numbers. Instead, in the casB
5 2

3 , the complex eigenvalues suggest the presence of r
nance islands aroundP4,5. Indeed, forB5 2

3 , the eigenval-
ues are 11l6Al212l, 11l/56Al2110l/5 and there-
fore, in the interval22,l,0, we find complex conjugate
eigenvalues.

Now we will consider the case where the stationary so
tions are determined by the resonance of period 7, whic
localized aroundP4,5. The case with the period 6 resonan
can be treated similarly. The dependence of the amplitu
Pn on the parameterB is shown in Fig. 11~a!. As the param-
eter B increases, in general, the magnitude of these am
tudes decrease while keeping a similar profile. The struc
of the phase space (Pn ,Pn11) for 0,B,1 is similar to that
of Fig. 1~a!. Our numerical simulations indicate that the
stationary solutions are stable.

Let us consider initial conditions in a small vicinity of th
stationary solutions and a small positive defect 0,d3

x,y!1.
In this interval, the solutions are quasiperiodic. As the po
tive defect d3

x,y becomes larger, the symmetric pairs
waveguides, such asI 1

x,y I 5
x,y , increase their intensity corre

lations. That is precisely what we show in Fig. 11~b!. That is,
as in Sec. IV, the oscillation amplitudes ofI n

x,y increase,
while the intensity difference between symmetric wav
guides remains the same on average. In particular,I 1

x'I 1
y

'I 5
x'I 5

y as d3
x,y.0 becomes larger. These induced corre

tions are robust with respect to small differences betweend3
x

andd3
y .

It is also possible to induce Hamiltonian chaos in th
system. For a suitabled3

x,y in an interval 21!d3
x,y,0,

where dn
x,y50 for nÞ3, SSI can take place. However,I n

x

diverges from its otherwise symmetric waveguide, in partic
3-8
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lar, I 1
x diverges fromI 5

x . The picture is similar to that of Sec
V. When the initial conditions are in the neighborhood of t
stationary solution of Fig. 11~a! and when the defects ar
d3

x5d3
y520.00785, the set of signalsJ15

x,y5I 1
x,y2I 5

x,y , J24
x,y

5I 2
x,y2I 4

x,y , andJ76
x,y5I 7

x,y2I 6
x,y synchronize in the informa

tion sense. This is what we observe in Fig. 11~c! for the
variablesJ15

x , J24
x , and J76

x . Moreover, the differencesI n
x

2I n
y remain bounded for alln as shown in Fig. 11~d!.

VII. CONCLUSIONS AND DISCUSSION

We have studied the intensity correlations of electrom
netic fields that arise in certain pairs of coupled Ke
waveguides, i.e., oscillators, when the system dynamic
quasiperiodic or chaotic. These correlations are generate
a new family of solutions of the DNLSE, which has as initi
conditions the neighborhood of a set of stationary soluti
Qn(z)5Pn exp(2ilz) with real-valued time-independen
amplitudesPn and an oscillation frequencyl. The Pn , in
turn, are given by the resonances of a suitable Hamilton
map. Our solutions differ from the breather solutio
@6,16,17#, which are obtained from the same area-preserv
map, in some important features. First, the homoclinic~het-
eroclinic! orbits of the Hamiltonian map give rise to th
breathers, known also as bright~dark! DSS, while the map
resonances determine our stationary solutions. Second
breathers require, at least formally, an infinite number
waveguides, while our stationary solutions need only a fin
number of waveguidesM, where M is determined by the
periodicity of the resonance under consideration. Our
tionary solutions satisfy periodic boundary conditions a
have the same phase. The second and third properties m
our solutions different from those studied by Johanssonet al.
@20#.

FIG. 11. Case with seven waveguides andG52.5.~a! Plot of the
stationary fieldsPn versus waveguide index forB50 ~solid line!,
B5

2
3 ~dotted line!, andB51 ~dashed line!. ~b! Plot of I 1

x(z) when
B5

2
3 . d3

x,y50.005~solid line!, d3
x,y50.025~dashed line!. ~c! Plot of

J15
x ~solid line!, J24

x ~dashed line!, J76
x ~dotted line! versusz for

d3
x,y520.00785.~d! Plot of I 1

x2I 1
y , I 2

x2I 2
y , and I 3

x2I 3
y versusz

for d3
x,y520.00785.
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When the initial conditions are close to the stationary
lutions, a positive defect (d3.0) can induce a substantia
amplification of the quasiperiodic intensity oscillations.
addition, certain pairs of waveguides show intensity corre
tions that become stronger as the positive defect beco
larger. We have shown analytically, in models consisting o
few waveguides, that the aforementioned intensity corre
tions take place. Chaos emerges via a symmetry brea
instability of the aforementioned intensity pairs for a sm
negative defect (d3,0). In this case, a very interesting form
of synchronization takes place between certain signals g
erated by different pairs of waveguides. These signals s
chronize in the information sense, since their binary sy
bolic dynamics coincide with an excellent accuracy. Th
we provide an example where synchronization, in the inf
mation sense, is possible in a Hamiltonian system. For a
trary initial conditions and defectsd3, typically, synchroni-
zation of symbolic information~SSI! does not take place
Moreover, we have carried out a continuation study of
stationary solutions. We found that along the stationary so
tion branch there is a bifurcation which triggers the onset
the SSI dynamics.

We have used the linear cross correlation functionR to
quantify the extent of SSI. In the presence of phase sync
nization of the waveguides, the coherence functionZ, which
was introduced by Kuramoto@22#, is typically close to its
maximum, i.e.,Z;1. In contrast, the presence of phase sl
across the oscillators destroys the aforementioned cohere
Typically, the nonvanishing Liapunov exponents have
same order of magnitude. However, when SSI takes pla
phase synchronization of all oscillators follows withZ'1
and roughly a single positive Liapunov exponent is prese
Whend3.0, the center of mass, i.e., the average position
the intensities, executes small amplitude oscillations in b
the chaotic or nonchaotic regimes. That is, the wavegu
intensities have relatively small fluctuations and, on avera
a persistent localized pattern of intensities is observed
contrast, whend3,0, this center of mass typically execute
large amplitude oscillations in the chaotic regime. We ha
also calculated the probability density function~PDF! of the
length of an interval with a given binary symbol. The core
these PDF has an exponential form when SSI takes place
have also studied a generalization of the DNLSE to cons
arrays of elliptically birefringent waveguides. In this syste
the quasiperiodic and chaotic dynamics is qualitatively sim
lar to that of the DNLSE.

The present study can be extended to consider other t
of coupled nonlinear waveguides, such as quadr
waveguides. Finally, we point out that our solutions m
describe interesting effects in quasi-1D Bose-Einstein c
densates~BEC’s! confined in periodic potentials@13#, since
the latter has been modeled, in the tight binding approxim
tion, with the DNLSE@13#.
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